当前位置:首页 > 教学资料 > 教学设计

三角形的内角和教学设计

时间:2024-06-08 23:27:47
三角形的内角和教学设计

三角形的内角和教学设计

作为一位无私奉献的人民教师,就难以避免地要准备教学设计,借助教学设计可以让教学工作更加有效地进行。如何把教学设计做到重点突出呢?下面是小编为大家整理的三角形的内角和教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

三角形的内角和教学设计1

  教学内容:人教版小学数学第八册第85页例5及”做一做”

教学目标:

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想

3、在探索中体验发现的乐趣,增强学好数学的信心、

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学难点 :

验证所有三角形的内角之和都是180°

  教具准备:多媒体课件。

学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)

教学过程:

一、 设疑引思

1、 分小组分别量出直角三角形、锐角三角形、钝角三角形的三个内角的度数、

2、 每小组请一位同学说出自已量的三角形中两个角的度数老师迅速”猜出”第三个角的度数、

3、 设问:老师为什么能很快”猜” 出第三个角的度数呢?

三角形还有许多奥妙,等待我们去探索、

二、 探索交流,获取新知

1、 量一量:每个学生将自已刚才量出的三角形的内角和的度数相加,初步得出”三角形的内角和是180°”的结论、

2、 折一折:将正方形纸沿对角线对折,使之变成两个完全重合的三角形,发现:一个三角形的内角和就是正方形4个角内角和的一半,也就是360的一半,即180度, 初步验证”三角形的内角和是180°”的结论、

3、 拼一拼:学生先动手剪拼所准备的三角形,进一步验证得出”三角形的内角和是180°”的结论、

4、 师利用课件演示将一个三角形的三个角拼成一个平角的过程、

5、 验证:FLASH演示三种三角形割补过程

发现1: 通过把直角三角形割补后,内角∠2,∠3 组成了一个()角,等于()度,∠1等于90度。所以直角三角形的内角和等于( )度。

发现2:通过把钝角、锐角三角形割补后,三角组成了一个( )角,而( )角等于( )度。所以锐角三角形和钝角三角形的内角和都是180度。

6、 小结:刚才能过量一量折一折拼一拼,你发现了什么?

生说,师板书:三角形的内角和———180°

三、 应用练习,拓展提高

1、书例5后”做一做”

思考:为什么不能画出一个有两个直角的三角形?(两个钝角、一个直角和一个钝角的三角形?)

2、下面哪三个角会在同一个三角形中。

(1)30、60、45、90

(2)52、46、54、80

(3)61、38、44、98

3、走向生活:

(1)那天,老师去买了一块三角形的玻璃,我拿着玻璃,刚到校门,一不小心,碰在门上了,摔成这几块(撕),哎,只有再去买一块,但尺寸我记不得了,该怎么办,你们能不能帮老师想想办法?我凭哪块碎片能再去配一块和原来一样的三角形玻璃吗?

(结合学生回答进行演示:延长两条边,交于一点,形成原来的三角形。所以:两个角确定了,三角形玻璃形状和大小也就确定了。)

四 作业:作业本

五 全课总结

总结:今天这节课我们研究了三角形的内角和,你们学到了哪些知识,有什么收获?

板书设计:三角形的内角和

三角形的内角和———180°

三角形的内角和教学设计2

教学内容:

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:

1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3.培养学生动手动脑及分析推理能力。

重点难点:

掌握三角形的内角和是180°。

教学准备:

三角形卡片、量角器、直尺。

导学过程

  一、复习

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)

二、新知

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)

1、读学卡的学习目标、任务目标,做到心里有数。

2、揭题:课件演示什么是三角形的内角和。

3、猜想:三角形的内角和是多少度。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)

(4)汇报结论(清楚明白的给小组加优秀10分)

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)

  三、知识运用(课件出示练习题,生解答)

1、填空

(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).

(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。

(3)等边三角形的3个内角都是( )。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。

(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。

2、判断……此处隐藏14722个字……

四、合作探究

师:这是同学们亲自测量发现的,没有得到统一的结果,这个办法不能使人信服,有没有别的方法验证?老师给每个小组都提供了很多个三角形,现在请你们以小组为单位,拿出三角形来研究研究三角形的内角和到底是多少度。?(8分钟)(剪拼法)

1、操作验证探索三角形内角和的规律(6分钟)

(1)操作验证:小组合作

拿出装有学具的信封[信封里面有老师为学生事先准备的各种类型的三角形若干个(小组之间的三角形大小都不同)];拿出自备的直尺?剪刀

(老师要给学生充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)

2、学生汇报

(1)转化法:

生:两个同样的直角三角形可以拼成一个长方形,长方形每个直角都是90度,内角和就是360度,所以三角形的内角和就是360度的一半180度。

师:他们用长方形的内角和来研究今天所学的知识,得到三角形的内角和是180度。

(2)折拼法

生:把三角形三个内角分别向下边折叠,拼成了一个平角,平角是180度,所以三角形的内角和是180度。

师:他们是用折拼法验证三角形的内角和是180度(动手能力真强)

(3)剪拼法

生:把三角形三个内角撕下来,拼成一个平角,平角是180,所以三角形的内角和是180度。(师:提问怎样能很快的找到三个角?把他们做上标记。)

标记上之后再拼一拼,可见标记的方法很科学。(20分钟)

3、教师演示

师:我们再来感受一下怎么验证三角形的内角和的?

师:这是什么三角形?把他折一折。

师:这是什么三角形?我们也可以把他折一折。你有什么发现?(折完以后都有一个平角,平角是180度,所以三角形的内角和是180度)

师分别通过剪拼法验证直角三角形、钝角三角形、锐角三角形内角和。

师:注意观察。

师:演示完毕有什么发现?(预设这些三角形剪接后都拼成了平角)平角是180度,所以三角形的内角和是180度。

师:刚刚我们研究了什么三角形。他们的内角和都是180度,那我们研究的这些三角形能不能代表所有的三角形,能。(因为三角形按角分类只能分成这三种。)(22分钟)

4、演示任意一个三角形的内角和都是180度。

出示一些三角形,让学生指出内角和。

师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。)(板书三角形的内角和是180度。)

师:那我们再看看刚刚汇报的结果。为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)

师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。现在确定这个结论了吗?(25分钟)

师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。早在300多年前就有一位法国著名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°

师:你们能用今天的发现做一些练习吗?

五、测评反馈

1、判断。

(1)直角三角形的两个锐角的和是90°。

(2)一个等腰三角形的底角可能是钝角。

(3)三角形的内角和都是180°,与三角形的大小无关。

4、剪一剪。

把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?

六、课后作业

69页第1题、第3题。

七、板书设计

三角形的内角和教学设计11

  教学要求

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

教学重点

三角形的内角和是180°的规律。

  教学难点

使学生理解三角形的内角和是180°这一规律。

  教学用具

每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。

教学过程:

一、出示预习提纲

1、三角形按角的不同可以分成哪几类?

2、一个平角是多少度?1个平角等于几个直角?

3、如图,已知∠1=35°,∠2=75°,求∠3的度数。

  二、展示汇报交流

1、投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

4、指名学生汇报各组度量和计算的结果。你有什么发现?

5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?

提示学生,可以把三个内角拼成一个角,就只需测量一次了。

7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)

9、拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)

10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11。老师板书结论:三角形的内角和是180°。

12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

13、出示教材85页做一做。让学生试做。

14、指名汇报怎样列式计算的。两种方法均可。

∠2=180°—140°—25°=15°

∠2=180°(140°+25°)=15°

课后反思:

对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。

《三角形的内角和教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式